|
||||||||||||||||
Aims/Description: This module equips students with a comprehensive overview of the fundamental aspects of quantitative research methods and statistics. Students undertaking the module will gain experience in dealing with data and ways to analyse and report them. Using data from a range of applications and sources, students will learn practical statistical techniques and fundamental principles, as well as using IBM SPSS software to analyse data to make inferences and predictions. In the initial part of the module students will learn research question development, study design, data cycle, sampling and confounding, types of data, graphical and tabular representation of data and results, summarising numeric and categorical data. Students will then move on to learn about data distributions, hypothesis testing, confidence intervals and probability theory to build the knowledge-base required to undertake inferential statistics to make deductions about populations. Inferential statistics techniques covered include parametric (e.g. t-tests, ANOVA, correlations) and non-parametric tests (e.g. Mann-Whitney, Kruskal-Wallis), bootstrapping and regression analysis. The module will also actively link with the learning undertaken in other Level 1 modules on the programme. Students will put into practice their newly acquired knowledge of statistical tools.
Information on the department responsible for this unit (Information School):
URLs used in these pages are subject to year-on-year change. For this reason we recommend that you do not bookmark these pages or set them as favourites. Teaching methods and assessment displayed on this page are indicative for 2024-25.
|