|
||||||||||||||||
Aims/Description: Statistical mechanics at an intermediate to advanced level, including the concepts of micro and macro states, different ensembles, and mathematical formulation of calculating average values physical quantities that can be measured in experiments. Contemporary topics such as Quantum Statistical Mechanics, Phase transitions and critical phenomena and Mean field theory will be covered.Statistical physics is a probabilistic description of systems with many degrees of freedom and provides the microscopic basis of thermodynamics. TheĀ course focuses on understanding the ergodic hypothesis, classification of micro and macro states and calculation of thermodynamic quantities e.g., pressure, volume, free energy etc. of a system in the micro-canonical, canonical and grand canonical ensemble, quantum statistical mechanics, including Bose-Einstein and Fermi-Dirac statistics and Landau theory of phase transitions. Advanced topics such as mean field theory and critical phenomena will also be covered.
Information on the department responsible for this unit (Physics and Astronomy):
URLs used in these pages are subject to year-on-year change. For this reason we recommend that you do not bookmark these pages or set them as favourites. Teaching methods and assessment displayed on this page are indicative for 2025-26.
|